
D&T Practice / 2: 2014
www.data.org.uk

32

ROBOTICS

Robots come in all shapes and
sizes, none more so than ones
made with LEGO MINDSTORMS,
where the only limit is your
imagination, and possibly the
number of pieces at your disposal.

Traditionally, most robots used for education
use the standard differential drive
configuration, two powered wheels, one on
each side. When the motors move in the
same direction, the robot goes forward,
when they move in opposite directions, the
robot pivots.

Such a configuration limits the number of
directions a robot can move. Sometimes,
being able to move in ‘any’ direction can be
a massive advantage. Think of a robot in a
large warehouse with very tight corners or
little space between racks. Another example
where extra manoeuvrability is a strategic
advantage would be a football-playing
robot.

Normal wheels are made to turn in one
direction and tend to stick to the surface
quite well if pushed sideways, up to a point,
of course. Omnidirectional wheels or
omniwheels for short, are different. Unlike
their ordinary cousins, these ones are able
to roll in any direction due to small rollers
that are able to turn in the length of the axle.

Omniwheels, being able to move freely in
one direction and retain grip in the other can
be mounted in a triangular fashion. When
these wheels are mounted at 120° angles,
they make a very stable platform. This type
of setup is also known as a Killough
platform.

Any which way!
Xander Soldaat, Infrastructure Architect and robotics enthusiast

The wheels on the bot go round and round

33D&T Practice / 2: 2014
www.data.org.uk

ROBOTICS

If we power all the wheels in the same
direction, the platform would simply rotate
about its centre. However, it is possible to
make the platform move in useful directions
too.

The maths behind the movement
Due to the nature of the configuration of the
wheels, a little maths is required to convert
robot motion to motor speed. We’ll ignore
the robots’ ability to rotate for now and
come back to that later.

The robot’s linear speed has velocity and
direction. Being polar co-ordinates, these
can be transformed into Cartesian
co-ordinates, or a forward speed (X-axis)
and a sideways speed (Y-axis).

To calculate the wheel speed we can now
project the two components of the robot’s
speed on the wheel driving axis using the
wheel angle. This gives two speeds, one on
account of the robot’s forward motion, the
other on account of its sideways motion.
These two components added up give the
wheel speed on behalf of the robot’s linear
motion.

Now, to get back to the angular motion of
the robot. Due to its body shape, where the
driving wheels are aligned with the center,
we do not have to perform any additional
transformation of the robot’s angular speed,
so it can be stated that:

It is now possible to add these three
components (3, 4 and 5) to get the wheel
speed:

Which can be simplified as:

D&T Practice / 2: 2014
www.data.org.uk

34

ROBOTICS

Using 7, we can now calculate the motor speeds for our robot, which has its wheels A, B
and C at 0°, 120° and 240°. Substituting the wheel angles in the equation, we get the
following:

These can be simplified to these:

Putting it into practice
Now that we have our three equations for each motor, we can start
putting them into ROBOTC code. We’ll create a function that takes
the travel angle, our linear speed and the speed at which we wish to
rotate as its arguments and translates these into individual motor
speeds:

void MoveRobot(int angle, int Vlinear, int
Vangular) {

// Calculate the motor speeds
float VwA = Vangular + Vlinear *

cosDegrees(angle);
float VwB = Vangular + Vlinear * (-0.5 *

cosDegrees(angle) - 0.866 * sinDegrees(angle));
float VwC = Vangular + Vlinear * (-0.5 *

cosDegrees(angle) + 0.866 * sinDegrees(angle));

// Set the motor speeds
motor[motorA] = round(VwA);
motor[motorB] = round(VwB);
motor[motorC] = round(VwC);

}

If we want to move the robot along the X-axis (0°) for 1 second at
speed 50, we’d call the MoveRobot() function as follows:

task main ()
{

MoveRobot(0, 50, 0);
wait1Msec(1000);

}

The robot will move like this:

To move the robot along the Y-axis (90°), use the following code:

task main ()
{

MoveRobot(90, 50, 0);
wait1Msec(1000);

}

The robot can also move along both axes by specifying a 45° angle:

task main ()
{

MoveRobot(45, 50, 0);
wait1Msec(1000);

}

The movements can be combined to create shapes, this makes a
square:

task main ()
{

MoveRobot(90, 50, 0);
wait1Msec(500);
MoveRobot(180, 50, 0);
wait1Msec(500);
MoveRobot(270, 50, 0);
wait1Msec(500);
MoveRobot(0, 50, 0);
wait1Msec(500);

}

Toeing the line
Now that we’ve seen the effects of Vlinear and direction,
how do we apply the Vangular part? If we mount a light sensor on
the front of the robot, we could use it to follow a line. We can use
Vangular to maintain the position of the robot above the edge of
the line.

35D&T Practice / 2: 2014
www.data.org.uk

ROBOTICS

Links
• Xander Soldaat’s Botbench website: www.botbench.com
• Software for this article: www.botbench.com/blog/dt-article
• ROBOTC for NXT: www.robotc.net/download/nxt/
• Building Instructions for the HiTechnic RotaBot:

www.hitechnic.com/models
• Laurens Valk’s website: http://robotsquare.com/
• Aswin Bouwmeester’s site: http://nxttime.wordpress.com/
• Rotacaster: http://rotacaster.com.au/

The line follower will use a simple proportional response to the
deviation from the line. By sitting the sensor right at the edge of the
line, a value that is somewhere between the white and black value
will be considered the centre.
Use the following piece of code to determine what that value is:

#pragma config(Sensor, S1, LIGHT,
sensorLightActive)
//*!!Code automatically generated by 'ROBOTC'
configuration wizard !!*//

task main()
{

while (true)
{

nxtDisplayCenteredBigTextLine(2, "%3d",
SensorValue[LIGHT]);

wait1Msec(50);
}

}

This will display the current value of the sensor on the screen. In the
case of this experiment, the values were found to be 55 for white
and 30 for black, so 43 will be considered the value for the sensor
being centred over the edge.

To make the robot follow the line, consider the following code. Note
that “LIGHT” is an alias for a LEGO Light Sensor attached to port
S1. A link to the complete listing can be found in the links section.

task main ()
{

// Change these to suit your environment
int white_value = 55;
int black_value = 30;
int Vlinear = 30;
// Make this negative if you find the robot

moving in the wrong
// direction with regards to the line.
float multiplier = 1.0;

//
float off_centre = 0.0;
float Vangular = 0.0;

while (true)
{

// Read the sensor value and calculate how
off-centre the robot is

off_centre = SensorValue[LIGHT] -
((white_value + black_value) / 2);

Vangular = round(off_centre * multiplier);

// Display the amount of correction on the
screen (useful for debugging

nxtDisplayBigTextLine(1, "%d", off_centre);

// Keep in mind that the sensor is mounted
at 90 degrees with

// respect to motor A's axle
MoveRobot(90, Vlinear, Vangular);

// Do this 20 times per second
wait1Msec(50);

}

}

Conclusion
Omniwheels offer very exciting new types of robotic locomotion to
explore. With a little experimentation, it is possible to make the robot
move straight and rotate simultaneously. To use omniwheels you will
need at least three wheels per robot. The wheels on this specific
robot are made by Rotacaster. Combining this platform with an IR
football-seeking sensor, can make it a fun game to help students in
learning advanced programming skills. A gyroscope or compass
sensor could be used as tools for concepts such as accurate
positioning instead of simply using dead reckoning. With a little
imagination and skill, omniwheels can take your robotics curriculum
in a new direction.

Credits
Thank you to Laurens Valk and Aswin
Bouwmeester for helping out with the maths.

