

Tutorial

Xander Soldaat

I’d Rather Be Building Robots

11-Apr-12

ROBOTC Driver Suite

1

Contents
1 Introduction .. 2

1.1 What is the ROBOTC Driver Suite? .. 2

1.2 Design architecture ... 2

1.3 Types of sensors .. 3

1.3.1 Analogue ... 3

1.3.2 Digital I2C .. 3

1.3.3 Digital using RS485 .. 3

1.4 Prerequisites ... 3

2 Setting up the drivers .. 4

2.1 Extracting the files .. 4

2.2 Setting up ROBOTC ... 4

3 Getting started .. 7

3.1 Example 1: The fields are alive with the sound of…beeping .. 8

3.2 Example 2: Heading somewhere? ... 11

3.3 Example 3: Tilting Tones ... 15

4 Advanced Topics ... 19

4.1 Turning your sensor all the way to eleven .. 19

4.2 Configuring ROBOTC to use faster I2C .. 19

5 Sensors and Driver Names .. 21

5.1 Dexter Industries ... 21

5.2 HiTechnic ... 21

5.3 LEGO .. 21

5.4 Mindsensors .. 22

5.5 Others ... 22

2

1 Introduction

1.1 What is the ROBOTC Driver Suite?
ROBOTC comes with plenty of built in drivers for a wide variety of sensors. However, they don’t

expose all of the power that some of these sensors have. They will often allow you to read the

sensor’s primary value and nothing more. For example, the HiTechnic Compass can only be read,

not calibrated through the standard drivers, you can’t read the raw RGB values of a colour sensor.

Other sensors simply aren’t represented at all. There is a good reason for that, ROBOTC is a tool for

the masses, which means that it caters to it. Some of the more exotic sensors on the market cater to

a much smaller audience.

That’s where the Driver Suite comes in. It started with me wanting support for the HiTechnic IRLink

back in 2008 and now has support for 60+ sensors from many manufacturers. The aim of the Suite is

to make the drivers as easy and straight-forward to use as the ones that are built-in to ROBOTC. The

Suite will also expose most, if not all, of the functionality the sensor offers.

1.2 Design architecture
The majority of drivers in the Suite use the same architecture. After writing the first couple of

drivers, it became clear that a lot of functionality pertaining to communicating with the sensors was

duplicated. To avoid this kind of thing, the Suite uses a layered approach:

Sensor Driver

common.h
Additional common

includes

ROBOTC

The sensor driver contains the logic and commands that the sensor requires to function. This is the

part that you use in your own program.

The common.h include file contains the I2C communication code and a collection of utility functions.

These functions are generally not used by your program, although you are free to do so.

The “Additional common includes” contain functions that are common to a group of sensors, for

example, the Motor MUXes of Mindsensors and Holit Data Systems share a lot of features, so it

makes sense to de-duplicate them.

The ROBOTC layer is not part of the suite.

3

1.3 Types of sensors
There are three main types of sensors:

 Analogue

 Digital using I2C

 Digital using RS485

1.3.1 Analogue

The analogue sensors are the simplest in their use. The NXT reads the voltage the sensor applies to

the sensor port and converts it to a 10 bit digital value between 0 and 1023. 0 means 0 volts and

1023 is between 4.3V and 4.8V, depending on the load on the NXT.

1.3.2 Digital I2C

Digital sensors that use I2C are by far the most common of the digital sensors. They use an industry-

standard communications protocol called I2C, which stands for Inter-Integrated Circuit. I2C uses a

master/slave configuration where the NXT is the master and the sensor acts as the slave. Each slave

has an address between 0 and 127, with the first bit used to signal whether the master wants to

either write to (0) or read from (1) the slave.

Communicating with such sensors is a lot more complicated than simply reading a voltage on a pin.

Although LEGO has defined a standard for communicating with these sensors, not all manufacturers

adhere to this, for any number of reasons.

1.3.3 Digital using RS485

There are now several sensors on the market that use the NXT’s high speed port, S4, which is able to

communicate at up to almost 1Mb/s using RS485. Compared to the max speed of 10KB/s or 30Kb/s

for I2C sensors, that’s a massive speed increase.

1.4 Prerequisites
This tutorial assumes you are using at least ROBOTC 3.08. If you are not using this, or a later version,

please download it from http://www.robotc.net/download/nxt/

Please note that the Driver Suite has been written for the Mindstorms NXT and Tetrix platform and

will not work with VEX Cortex or PIC.

If you have not already purchased ROBOTC, please consider doing so through my Associate link,

doing so will help support me to continue writing sensor drivers and tutorials like this one!

http://secure.softwarekey.com/solo/products/info.asp?A=91555. Thank you!

http://www.robotc.net/download/nxt/
http://secure.softwarekey.com/solo/products/info.asp?A=91555

4

2 Setting up the drivers

2.1 Extracting the files
Download the latest version of the suite from the Project Page. Extract them to a folder of your

choice. This example uses D:\Programming, but anything is fine. Preferably, extract it into a folder

where you normally store your ROBOTC programs.

This should create the following folder structure under C:\Programming

2.2 Setting up ROBOTC
Navigate to the Menu Level option in the Window menu and select “Expert”. This will give access to

additional options in the preferences, which are needed to use the Driver Suite.

http://botbench.com/blog/robotc-driver-suite/

5

Open the Preferences UI by navigating to the View menu and selecting “Detailed Preferences”

Select the “Directories” tab in the Preferences UI.

Click on the Browse button for the Source Files directory path and select whatever path you’ve been

using to store your ROBOTC programs. This tutorial assumes you are using D:\Programming

Click on the Browse button next to the Include files for Platform NXT and select

D:\Programming\rdpartyrobotcdr-2.5. The final result should resemble the window below:

6

To get access to the custom I2C sensors in your Motor and Sensors setup UI, do the following:

Open a new file:

Now open the Motor and Sensor Setup from the Robot menu

Navigate to the Sensor Management tab and ensure the “Allow Custom Designed Sensors” is ticked

and click OK.

ROBOTC is now ready to go!

7

3 Getting started
Now that you have a basic understanding of how the Suite has been designed and your ROBOTC

environment has been setup, it is time to get our hands dirty. I have created a number of examples

of how to create your own program from scratch. I realise that not all people who read this will have

those sensors but lucky for you, the Suite comes with at least one example program for each sensor

driver, often more. You will have to draw your own parallels between those programs and the

examples provided in this tutorial.

When using the Driver Suite, it is imperative that you don’t use the built-in device specific sensor

drivers that are part of ROBOTC. They will cause a conflict and will give you very strange sensor

values or nothing at all. You must always check the example of the individual sensor driver to ensure

you are using the right sensor type.

Another important thing to note is that you should always use the functions from the Driver Suite

and not ROBOTC’s own SensorValue[] variable. It will not contain any meaningful information

and may interfere with the Driver Suite.

8

3.1 Example 1: The fields are alive with the sound of…beeping
The Dexter Industries dCompass is a 3D compass sensor; it can

detect magnetic field strengths on all three axes. Normally you

would use two of these axes (X and Y) to calculate your current

heading. However, using a little math, you can easily use it to

detect total magnetic field strength. This is very useful if you

want to use it to find cables in the wall or other metal objects.

To calculate the total field strength you can use the following

formula:

 √

In ROBOTC code that would look like:

If we look at the documentation for the Dexter Industries dCompass, we can see there is a function

called DIMCreadAxes(), which allows us to read all three fields in one go:

Assuming the dCompass is connected to Sensor Port 1 (S1), the code for using this would looks like

this:

9

Before we can really use the sensor, it needs to be configured. The dCompass is a digital sensor that

uses I2C to communicate with the NXT. Open the Motors and Sensors Setup tool and navigate to

the Sensors tab. From the drop down menu, select “I2C Custom” and give the sensor a name like

“DIMC” or “COMPASS”

This will generate a set of “pragma” statements at the top of the program:

These statements are used by the compiler to ensure the sensor is configured correctly.

The dCompass needs to be initialised before we can start reading from it; the correct gain, sample

rate and mode need to be selected. This is done with DIMCinit():

10

In order to allow the compiler to find the driver, DIMC-driver.h in this case, we’ll have to add an

#include statement below the pragma. Putting it all together, the program will end up looking

like this:

Our magnetic field detector is now ready to go! If you attach the sensor to the end of a beam like in

the picture below, you can wave it around like a magic wand.

You can watch a video of it on YouTube: http://www.youtube.com/watch?v=icrtNMrK3qY

The source code for this program is available in the Driver Suite , just open DIMC-test3.c in

ROBOTC.

http://www.youtube.com/watch?v=icrtNMrK3qY

11

3.2 Example 2: Heading somewhere?
The HiTechnic Gyroscopic Sensor is an analogue sensor that

returns the current rate of rotation (angular velocity) in

degrees per second.

Most of the time this sensor is used in things like balancing

robots but you can also use it as a compass of sorts.

How would that work? Seeing as the sensor measures rate of

turn in degrees per second, we can simply integrate to find the

number of degrees the sensor has turned. In other words, if we keep track of how fast we’ve been

turning at constant intervals, we can keep track of our current position. A more mathematical

approach (thanks, Laurens Valk) can be found below:

If the angular velocity at time is given as ()

 ()
 ()

Then the robot’s heading () at time is given as follows

 () ∫ ()

Here, is defined as the start of the program, so describes the time elapsed since the

beginning of the program.

Actual measurement is not continuous. The angular velocity is measured once at each interval

 . For example, if an interval is 20ms, then . () can therefore only be found as the

sum of small angle changes:

 () ∫ ()

 ∑ ()

This is evaluated with a loop, from i = 0 to (the amount of measurements). () is the

sensor measurement at interval i, so at time . Multiplying this measurement by gives the

small angle change during that interval. Adding all these small angle changes gives the total change

in angle, which is your robot’s current heading.

In ROBOTC, we’re going to create a loop that always takes 20ms to complete. This makes it much

easier to determine , which will then simply be 20ms, or 0.02s. The resulting code looks like this:

12

It is sometimes surprising how little code the math boils down to. This is not always the case,

though. Keep in mind that if you make smaller, you may get more accurate results. 20ms was

chosen to allow the program to do other things as well, which we’ll add later.

The angular velocity can be read with the HTGYROreadRot() function:

It is important to note that the Gyro is a sensor that needs to be calibrated before you use it. If you

were to read the sensor’s raw value, its value would be around 620 at rest. Negative angular

velocity would take away from that value, positve velocity would add to it. This isn’t very useful and

“around” isn’t the level of accuracy we need if we want to calculate the heading. This is where

HTGYROstartCal() comes in:

13

Once we have this offset value which is based on a number of measurements taken while the sensor

was at rest, it is subtracted from all measurements returned by HTGYROreadRot(). That means that

the angular velocity values are now -300 to +300 deg/sec, rather than 320 deg/s to 920 deg/s.

Assuming the Gyro is hooked up to Sensor Port 1 (S1), our code now looks like this:

ROBOTC will need to be configured to use this sensor correctly, and to do that we have to use the

Motors and Sensor Setup tool. Configure the sensor to be “Analogue Raw Value (0)” and give it a

meaningful name like HTGYRO:

That should generate the following pragma statements at the top of your file:

14

Next step is to add the #include statement to ensure the compiler can find the driver, delcare the

variables we need and display our current heading on the screen. Below you can see the final result:

Just mount the sensor to the side of your NXT brick and rotate

it around so you can see the heading change. You can watch a

video of it in action here:

http://www.youtube.com/watch?v=2bAcR3hktKs

This program is part of the Suite and can be found by opening

HTGYRO-test2.c in ROBOTC.

http://www.youtube.com/watch?v=2bAcR3hktKs

15

3.3 Example 3: Tilting Tones
The Mindsensors ACCEL-Nx is a digital

acceleration and tilt sensor that can measure

X, Y and Z axes values. This sensor is great if

you want to know how quickly you are

accelerating, for collision detection or, using

the tilt data, check your robot is upside

down or not.

We’re not going to do anything sensible with

this sensor, though, that would be too easy.

This example is going to a noisy one, like the first one, only more annoying; we’re going to use the

3D tilt data to control sounds generated by the NXT.

There’s no maths involved in this example, we’re going to generate two sounds based on the X and Z

axes and control the time between the sounds using the Y tilt data.

The tilt data generated by the sensor seems to go between -20 and 20, so if we want to use the

whole range, we’ll have to add 20 to the value. Just to be sure, we’ll force the data to always be 0 or

more. This is the ROBOTC code to turn the tilt data into two frequencies and a wait time:

Multiplying the titlt data by 20 and 25 makes the frequencies a little more interesting. The max2

function takes the biggest number in the arguments given. That means that if the tilt data does go

below 0, max2() will simply return 0. This function is actually part of the Driver Suite’s common.h

file:

There is also a min2(), min3() and a max3(), which return the smallest of two, smallest of three

and largest of three numbers, respectively.

16

The tilt data can be read from the sensor using MSACreadTilt():

It is important to understand that the ACCEL-nNx is capable of operating on a number of scales and

needs to be configured properly before you can start reading from it. The scale we’re going to use is

±10G. The scale is set using MSACsetRange():

Instead of the numbers 1 – 4, you can also use these aliases (defines):

Using these will make your code a lot more readable.

17

Putting it all together, we’ve got the following ROBOTC code:

This is a digital sensor, so we’ll open the Motors and Sensors Setup tool and navigate to the Sensors

tab. From the drop down menu, select “I2C Custom” and give the sensor a name like “ACCEL”.

Putting it all together, we end up with the code below:

18

So now all you need to do is hook up your accelerometer to the side of your brick, connect it to

Sensor Port 1 and run it. You can find the complete program in the Driver Suite, just open MSAC-

test2.c in ROBOTC.

If you’re curious to find out what mine sounded like, be sure to check out the video:

http://www.youtube.com/watch?v=PjGu2g-oVZk

http://www.youtube.com/watch?v=PjGu2g-oVZk

19

4 Advanced Topics

4.1 Turning your sensor all the way to eleven
ROBOTC has a nifty feature that allows you to communicate with your your digital I2C sensors at a

much higher clock speed. The standard clock speed is around 10 KHz, which allows you to squeeze

about 1200 bytes/s. That excludes overhead of addresses, start and stop conditions. It comes down

to about 165 I2C transactions if you’re only reading 1 byte from your sensor, much less if you’re

looking to read multiple bytes.

You can speed things up dramatically if you use ROBOTC’s fast I2C clock speed, which runs at 30KHz,

3 times the normal speed. Below are the results of some read tests that were performed a little

while ago:

Transactions per second

Bytes Standard Clock Fast Clock

1 167 501

2 143 500

3 125 500

4 125 334

5 111 333

6 100 333

7 91 251

8 83 250

9 77 250

10 71 220

11 67 200

12 63 200

13 59 187

14 56 167

15 53 167

16 50 166

Unfortunately, not all sensors like to communicate at this speed. HiTechnic and LEGO sensors tend

to behave better at the lower speed but Dexter Industries, Mindsensors and several others that have

been tried, seem to have no problems with the higher clock speeds.

Why you would even consider cranking up the speed? A good example would be when using

multiple sensors that require you to read 6 bytes at once, like the Mindsensors ACCEL-nx. Your

sensor reading loop can now go around much quicker, which can be a very good thing if speed is of

the essence. Who needs a soccer bot that plays in slow-mo?

4.2 Configuring ROBOTC to use faster I2C
To configure ROBOTC to use the high speed I2C clock, simply open the Motors and Sensors Setup

tool and navigate to the Custom I2C Sensors sensor type. Depending on whether you sensor

requires a 9V supply or not, you can pick either “I2C Custom Fastest” or “I2C Custom Fastest 9V”.

Don’t bother with the “Faster” ones, they’re pretty useless.

20

Don’t worry about breaking your sensor by trying out the higher speeds. The worst that can happen

is that you cause the sensor to hang, which is easily remedied by unplugging the cable and plugging

it back in. Then just reconfigure the sensor to use the normal clock speed, which is “I2C Custom” or

“I2C Custom 9V”.

The pragmas for the various types:

You don’t need to change anything in your code, other than the pragmas to make use of the faster

clock speed. Do keep in mind, though, that a transaction between the NXT and sensor now takes

roughly a third of the time it did before. If you have specific timing in your code, you may need to

compensate for that.

21

5 Sensors and Driver Names

5.1 Dexter Industries

Name Description

DFLEX-driver.h ROBOTC Dexter Industries dFlex Sensor driver

DGPS-driver.h Dexter Industries GPS Sensor driver

DIMC-driver.h Dexter Industries IMU Sensor driver

DIMU-driver.h Dexter Industries IMU Sensor driver

DPRESS-driver.h ROBOTC dPressure Sensor Driver

DTMP-driver.h ROBOTC DI Temp Probe Driver

TIR-driver.h Dexter Industries Thermal Infrared Sensor driver

5.2 HiTechnic

Name Description

HTAC-driver.h Acceleration Sensor driver

HTANG-driver.h Angle Sensor driver

HTBM-driver.h Barometric Sensor driver

HTCS-driver.h Color Sensor driver

HTCS2-driver.h Color Sensor V2 driver

HTEOPD-driver.h EOPD Sensor driver

HTGYRO-driver.h Gyroscopic Sensor driver

HTIRL-driver.h IR Link Sensor driver

HTIRR-driver.h IR Receiver Sensor driver

HTIRS-driver.h IR Seeker driver

HTIRS2-driver.h IR Seeker V2 driver

HTMAG-driver.h Magnetic Field Sensor driver

HTMC-driver.h Magnetic Compass Sensor Driver

HTPB-driver.h Prototype Board driver

HTRCX-driver.h IR Link RCX Comms Driver

HTSMUX-driver.h Commonly used SMUX functions used by drivers

HTSPB-driver.h SuperPro Prototype Board driver

HTTMUX-driver.h Touch Sensor Multiplexer Sensor driver

5.3 LEGO

Name Description

LEGOEM-driver.h RobotC Energy Meter Driver

LEGOLS-driver.h Light Sensor driver

LEGOSND-driver.h SMUX driver for the Lego Sound sensor

LEGOTMP-driver.h New Temperature Sensor Driver

LEGOTS-driver.h Touch Sensor driver

LEGOUS-driver.h SMUX driver for the Lego US sensor

22

5.4 Mindsensors

Name Description

MSAC-driver.h ACCEL-nx driver

MSDIST-driver.h DIST-Nx driver

MSHID-driver.h HID Sensor driver

MSLL-driver.h Line Tracking Sensor

MSMMUX-driver.h Motor MUX driver

MSMTRMX-driver.h RCX Motor MUX Driver

MSNP-driver.h Numeric Keypad Sensor driver

MSPFM-driver.h PFMate Sensor driver

MSPM-driver.h Power Meter Sensor

MSPPS-driver.h PPS-v3 driver

MSRXMUX-driver.h MSRXMUX RCX Sensor MUX Sensor driver

MSSUMO-driver.h Sumo Eyes Sensor driver

MSTMUX-driver.h Touch Multiplexer Sensor driver

MSTP-driver.h TouchPanel

NXTCAM-driver.h NXTCam driver

NXTServo-driver.h NXTServo Sensor Driver

5.5 Others

Name Description

common.h Commonly used functions used by drivers

CTRFID-driver.h Codatex RFID driver

EEPROM-driver.h EEPROM Driver

FLAC-driver.h Firgelli Linear Actuator driver

HDMMUX-driver.h Holit Data Systems Motor MUX driver

MAX127-driver.h MAXIM MAX127 ADC driver

MCP23008-driver.h Microchip MCP23008 driver

MICC-driver.h MicroInfinity CruizCore XG1300L driver

PCF8574-driver.h Philips PCF8574 IO MUX driver

STATS-driver.h Statistics functions

TMR-driver.h Additional _timers

23

